Existence of the upper critical dimension of the Kardar-Parisi-Zhang equation
نویسنده
چکیده
The controversy whether or not the Kardar-Parisi-Zhang (KPZ) equation has an upper critical dimension (UCD) is going on for quite a long time. Some approximate integral equations for the two-point function served as an indication for the existence of a UCD, by obtaining a dimension, above which the equation does not have a strong coupling solution. A surprising aspect of these studies, however, is that various authors that considered the same equation produced large variations in the UCD. This caused some doubts concerning the existence of a UCD. Here we revisit these calculations, describe the reason for such large variations in the results of identical calculations, show by a large-d asymptotic expansion that indeed there exist a UCD and then obtain it numerically by properly defining the integrals involved.
منابع مشابه
Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit.
A weak-noise scheme is applied to the Kardar-Parisi-Zhang equation for a growing interface in all dimensions. It is shown that the solutions can be interpreted in terms of a growth morphology of a dynamically evolving texture of localized growth modes with superimposed diffusive modes. By applying Derrick's theorem, it is conjectured that the upper critical dimension is four.
متن کاملUpper critical dimension of the Kardar-Parisi-Zhang equation.
Numerical results for the directed polymer model in 1+4 dimensions in various types of disorder are presented. The results are obtained for a system size that is considerably larger than considered previously. For the extreme "strong" disorder case (min-max system), associated with the directed percolation model, the expected value of the meandering exponent, ζ=0.5, is clearly revealed, with ve...
متن کاملGrowing surfaces with anomalous diffusion: results for the fractal Kardar-Parisi-Zhang equation.
In this paper I study a model for a growing surface in the presence of anomalous diffusion, also known as the fractal Kardar-Parisi-Zhang equation (FKPZ). This equation includes a fractional Laplacian that accounts for the possibility that surface transport is caused by a hopping mechanism of a Levy flight. It is shown that for a specific choice of parameters of the FKPZ equation, the equation ...
متن کاملDirected polymers in high dimensions.
We study directed polymers subject to a quenched random potential in d transversal dimensions. This system is closely related to the Kardar–Parisi– Zhang equation of nonlinear stochastic growth. By a careful analysis of the perturbation theory we show that physical quantities develop singular behavior for d → 4. For example, the universal finite size amplitude of the free energy at the rougheni...
متن کاملThe Non-local Kardar-Parisi-Zhang Equation With Spatially Correlated Noise
The effects of spatially correlated noise on a phenomenological equation equivalent to a non-local version of the Kardar-Parisi-Zhang (KPZ) equation are studied via the dynamic renormalization group (DRG) techniques. The correlated noise coupled with the long ranged nature of interactions prove the existence of different phases in different regimes, giving rise to a range of roughness exponents...
متن کامل